o Y a. ﬁ\\\ //W\\/ A%e
J\QQMM\.@///\/%J\.\\\ \\\\ /,,// ,AAA.»»A&%Q

1o 11 12 13 14 15 mm
A
&

[72)

.. 2
g :
: ) | &
m R -
: A g Qe M 5 O
Qmw > T.m
228 J{ SF 28 <n 7 5
® 3%y © Prov 4: o
15 s 488 R E EEEFERY — il =8
mE CiiY :
ﬁ S <o 0 ‘ 2 g
L "~ | = &
E 5 . 0 — 0 UW

g2 : — — 2_ 2
" =6 © - = = = L &
kS - 2"

-4 .. ) :

: =z
um - m

et




ED 325 493

AUTHOR
TITLE

PUB DATE
NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DCCUMENT RESUME
TH 015 712

Bjornstad, Jan F.
Tyo-3tage Sampling from a Prediction Poaint of
View.
90
7p.
Reports - Evaluative/Feasibility (142)

MF01/PC0l1 Plus Postage.

*Equations (Mathematics); *Mathematical ¥odels;
Maximum Likelihood Statistics; =*xPredictive
Measurement; =Sampling; Surveys

Modelirg the population in survey sampling proolems

continues to be controversial. An important reason is that the
likelihood principle makes it somewhat necessary to model the
population. Estimating the population total in two-stage survey
sampling is considered, making use of a "superpopulation" model. The
problem is then really one c¢f predicting the unobserved part of the
total. The concept of predictive likelihood is studied. A
non-Bayesian likelihood approach to prediction problems in general is
used. Prediction intervals and a predictor for the population tota?
are derived for the normal case, based on predictive likelihood.

(TJK)

222332233333 33 3333333333333 3333333333223 38222222222t Rt st

x Reprcductions supplied by EDRS are the best that can be made

x

from the original document.

x

x

I3 3232333323333 3 3333333333338 33333333 2233222222222 Rt il




-

ED325493

U.8. DEPARTMENT OF EDUCATION
Cttce of Educational Ressarch and improvement

RESOURCES INFORMATION
EDUCATIOMALCENTER e

{
%u 0 fas Dean (eproduced as

racoved from the pelsdon ot orgsnization
o grnating it

Q Minor changes have been made 10 impcove
teprogoctron qualty.

o Pointsof view or cpxuons statedn this docu-
maont do not necessanty (epresent nHicia!
OERI pos:tion 0f pokey

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TJaw F. BasenszA

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

TWO-STAGE SAMPLING FXOM A PREDICTION POINT OF VIEW

Jan F. Bjernstad, The University of Tromsg,
Institute of Mathematical and Physical Sciences, N-9000 Tromsg, Norway

KEY WORDS: Predictive likelihood, mean pre-
dictor, prediction intervals

ABSTRACT

Estimating the population total in two-stage
survey sampling is considered, making use of a
(superpopulation) model. The problem is then
really one of predicti~g tr : unobserved part of
the total, and the concept of predictive likeli-
hood is studied. Prediction intervals and a pre-
dictor for the population total are derived for
the normal case, based on predictive likelihood.

1. INTRODUCTION

Two-stage surveys are used in sampling from
finite populations of, say, N primary units or
clusters, where each primary unit consists of
m; secondary units. iV is assumed known, but
the m;’- are unknown before sampling. Let ¥;;
be the valuc of the variable of interest for sec-
ondary unit j of #’th primary unit. The problem
is to estimate the total

N m;

EDIM 2

i=1j=1

An example of this situation is considered in
Thomsen and Tesfu (1988), with ¢ being the size
of a particular population. The primary units
are certain administrative units, the secondary
units are households and y;; is the number of
persons in household j of the #’th administra-
tive unit.

We assunie that, before sampling, other mea-
sures of the sizes of the primary units are avail-
able to us. Let z1, ...,z )y be these measures and
let X =N, 2.

The sampling plan is as follows: At stage
1 a sample s of size ng of the primary units
(1,...,N) is selected according to some sam-
pling design, and at stage 2 we select for each

i € s a sample s, of size n, of secondary units
using possibly a different sampling design than
at stage 1. The designs are assumed to be
non-informative, i.e. they do not depend on the
yi;’s and m;’s. E.g., in Thomsen and Tesfu
(1988) the two-stage sampling plan is to use
pps-sampling at stage 1 (letting selection prob-
abilities of primary units be proport.onal to the
z,'s) and simple random sampling {srs) at stage
2.

The total sample size is n = } ;c,n; and
our data now consists of y(s) = {5 : i € s,
j € s} and m(s} = {m; : i € s}. Let
vy = (y(s),m(s)). For the pps-srs sampling
plan mentioned above a commonly used design-
unbizsed estimator of ¢ is the modified Horvitz-

Thompscn estimator (see for example Cechran
(1977), chapt. 11)

: X —mif;
tar = — % o (1)
where §; = ¥ s, ¥ij/ni-

In this paper a (superpopulation) model is
adopted, regarding m;, y;; as realized values of
random variables M;,Y;; for j = 1,..., M; and
i=1,..,N. M = (My,...,My) is assumed
independent of all Y;;, and further:

E(M;) = Bz;, V(M;)=c%v(z,), (2)
Cov(M;, M;) =0,

E(Yy)=p, V(¥y) =77, and
Cov(iyj,Yu) = pr> i k#j
Cov(Y;;,Yi) =0 if  [#i.

Let 0 = (B,0,1,7,p) with p > 0 and let v, =
Tiea ¥(zi), v3 = Log, v(wi). Typically v(-) =
29 with0<g<2

noyall (1976) considers a similar model
for 1%,;, assuming the m,’s are known, while

{qV)




Royall (1986) also considers unknown m,’s with
a model similar to (2).

The total ¢ is now a realized value of a ran-
dom variable T, where T can be expressed as

T= Zie: Zan; Yi.‘i + Z with

Z=ZZY,','+Z§Y£,'. (3)

iCs jgs; igs j=1

Expressing the total T on this form we see that
the problem :aa be described as one of predict-
ing the unobserved value z of the random vari-
able Z. It is often clarifying to write a predictor
T of T on the form

T=YYY+Z (4)

i€s jEo;

where Z then implicitly is a predictor of Z.
From this point of view Tgr, given by (1),
does not look like a reasonable predicor. Royall
(1970) seems to have been the first one to rea-
lize the value in representing any predictor on
the prediction form (4), see also Smith (1976).

Modelling the population in survey sampling
problems has been and still is controversial. An
important aspect of this issue is that the like-
lihood principle in a sense makes it necessary
to model the population. Without a model
the only stochastic elements are the samples
8 = {s,8 : i € s}, and the likelihood func-
tion is then flat (see, e.g., Cassel et al., (1977)),
which means that from the likelihood principle
point of view the data contains no information
about the unobserved y;;’s and m;’s. Vo make
inference we t}-refore need to relate the data to
the unobserved values somehow, and the most
natural way of doing so is to formulate a model
(see also remarks by Berger and Wolpert (1984,
p. 114)).

The random variables observed are 17(s),
M(s) and s, where s now is ancillary. The like-
lihood principle implies that inference should
depend only on the actual s observed and n .
on the sampling design. This is called the pre-
dictiou approach to survey sampling and will
be adopted in this paper. Hence everything is
considered conditior: al on 8. The prediction ap-
proach aims at choosing a predictor that is good

2

for the actual s obtained and 1as given signi-
ficant contributions to a better understanding
of several problems in survey sampling, some
of which are mentioned in Thomsen and Tesfu
(1988). 1t also enables one to use more conven-
tional statistical methods, although the prob-
lem is not to make inference about 8 but rather
predict Z. Hence 8 basically plays the role of a
nuisance parameter.

To predict Z we shall use the concept of pre-
dictive likelihood, a non-Bayesian likelihood ap-
proach to prediction protlems in general. One
can argue that in the context of a superpopula-
tion model survey sampling provides one of the
more natural prediction problems in statistics,
and predictive likelihood could therefore serve
as a basis for essentially all problems of this
kind in survey sampling. Some major references
to the general theory of predictive likelihood
are Hinkley (1979), Mathiasen (1979) and But-
lex (1986). A review of some of the suggested
likelihoods is given in Bjgrnstad (1990).

Section 2 introduces the concept of predic-
tive likelihood and shows how predictors and
prediction intervals can be constructed irom a
predictive likelihood.

In Section 3 a predictive likelihood is derived
for the normal model. The usual approaches
to obtain a predictive likelihood do not work
in two-stage sampling, mainly because Z is a
sum of a stochastic number of random variables.
Therefore a modihicacion is suggested.

The predictor obtained from the predictive
likelihood is given by:

Z = Es(Zly) = Z(m; - ni) X

i€e
1-p . n;p _>
S ~[L + < 3/
(1-"p+n.'p” 1-p+n;py
+ﬂZ(ﬂxt)
1gs

Here, §; = Zje,,- le/nl and é = (ﬂaf'a/}aﬁa&) is
the MLE. With w, = ¥ ;¢, 27 /v(z:)

B = {3 mizi/v(z:)}/w,. (5)

i€s

Since ,3 is the weighted leasi squares estimatur




it is the best unbiased estimator of 8. Let w, =
(1= A)/(1 < 5+ ).

Writing Zo = 3 ;¢, Zﬂ,'_(w,ﬂ-{- (1-w)%)+
Zig,(ﬁz;)ﬂ we see from (3) that predicting Z
by Zo means that for ¢ ¢ s each unobserved
Y;; is predicted by f and M; is predicted by
ﬁ:e;. For i € s, j & i, Y;; is predicted by
wit + (1 - i)

Three prediction intervals for Z based on
similar predictive likelihoods are constructed.
They are all of the form Zo & u(a/2),/Vp(2)
where u(a/2) is the upper («/2)-point of
N(0,1). Vp(Z) is a measure of the uncertainty
in predicting Z of the form V;(Z) = V;3(Z|y)+
(term for parameter uncertainty), see (18).

With vz = Y, v(2:),

Va(2Zly) = 7Y _(mi — m) x (6)
i€s

nip
1-p—m————— + —-—n; - 1)p-
( P T T T

1-
—L—-> + 73(BXs + polu;
1-p4nip
+p Y Bzi(Bz; — 1)) + pPav;.
ifs

For large no, the three intervals are practically
identical. However, for small ng they differ sig-
nificantly. To illustrate this confidence levels
. are estimated by simulation for 1 — a = .95,
ng = 6, N = 10, v(z) = = and selected values
of (z1,...,zn) ond 6.

In a subsequent paper a more comprehen-
sive simulation study fur estimating confidence
levels will be undertaken, as well as a consider-
ation of optimality for model-unbiased predic-
tors.

2. PREDICTIVE LIKELIHOOD

We shall here give a brief general introcuc-
tion to the concept of predictive likelihocd.
For a more complete exposition we refer to
Bjgrnstad (1990). Let Y = y be the data. The
problem is to predict the unobserved or future
value z of a random variable Z usually by a
predictor and confidence interval for Z. It is
assumed that (V,Z) has a probability density
or mass function (pdf) fs(y,z). In gen..cial we

3

let fo(-) and fs(-|-) denote the pdf and condi-
tional pdf of the enclosed variables. The joint
likelihood function for the two unknown quan-
tities, z and 0, is given hy l,(z,0) = fo(y, 2).
The aim is to develop a likelihood for z, L(z|y),
by eliminating 6 from l,. Any such likelihood
is called a predictive likelihood.

Differenc ways of eliminating 6 then give rice
to different L. The two main type of sugges-
tions are the conditional predictive likelihood
L., essentially suggested by Hinkley (1979), and
the profile predictive likelihood L,, first con-
sidered by Mathiasen (1979). Let R = r(Y, Z)
denote a minimal sufficient statistic for (Y, Z).
Then

Le(#ly) = fo(s, -1/ fo(r(y, 2)) (7)
LP(ZIy) = meax fe(y)z) = fé"(y)z) (8)

Typically, L. and L, are quite similar when suf-
ficiency provides a genuine reduction and the
dimension of 8 is small.

In linear normal models, L, will ignore the
number of parameters and can be misleadingly
precise. A modification of Lp, Lmp, that ad-
justs for this was suggested by Butler (1986,
rejoinder), see also Bjgrnstad (1990). Let ¥ =
(X1,---yXn) and Z = (Xj,...,X}), and assume
that all X;’s and X;’s are independent. Let
6 = (61,...,0k). Then Ly, is given by

Linp(2ly) = Lp(2ly) - II’(éz)Il/z/IHzHill/z(-

9)
Here, I*(§) = {I(f)} is the "observed”
information-matrix based on (y, z), i.e. I5;(f) =
-0%log fo(y,2)/00:00;. H, = H,(6;), and
H,(0) is the k X (n 4+ m) matrix of second-order
partial derivatives of log fs(y,2) with respect
to 6 and (y,z). We shall assume that any L
considered is normalized as a probability distri-
bution in Z. The mean and variance of [ are
uvien called the predictive expectation and the
predictive variance of Z, denoted by E,(Z) and
Vp(Z). Ep(Z)is the a natural predictor for 2,
called the mean predictor. L(z]y) also gives us
an idea on how likely different z-values are in
light of th: data, and can be used to construct
prediction intervals for z. An interval (ay,by)




is a (1 — ) predictive iuterval based on L(z|y)
if f:" L(zly)dz = 1 — a. A simplified (quasi)
(1 — a) predictive nterval is of the form

Ep(Z) £ uyfVp(2)

where u is the upper (&/2)-point in the ac-
{ual (exact or approximate) conditional distri-

bution, given y, of (Z ~ Eg(Zly))/ vVVe(Z]y).
3. PREDICTOR AND PREDICTION INTER-

VALS IN TWO-STAGE SAMPLING BASED
ON PREDICTIVE LIKELIHOOD

(10)

In two-stage sampling, Z is given by (3), and
is a sum of two mixtures. Therefore, instead
of considering a predictive likelihood for Z di-
rectly, we look at a joint predictive likelihood

for Z and M(3) = (M;, i € s). It has the
following form
L(z,m(3)ly) = Lm@z)(zly) L(m(3)ly)  (11)

Lm(r)(2ly) is a preaictive likelihood for z con-
ditional on M(3) = m(3), ie. based on
fo(y,2lm(3)). L(m(3)|y) is a predictive Like-
lihood for m(3) based on fg(y,m(3)). Then
E,,V, follow the usual rules for double expec-
tation, i.e.

E)(2) = Eu{Ep(ZIM(3))}  (12)
Va(2) = Ep{Vp(Z|M(3))}
+Vp{Ep(Z1M(3))}
In (12) Ep(Z|m(s)) and Vy(Z|m(3)) are the

predictive mean and variance for Z fromn

Lms)(2ly). In principle we can derive L(zly)
as the marginal likelihood from L(z,m(3)]y).
The advantage of (11) is that we are able ‘o
obtain Ep(Z) and Vp(Z) without actually de-
riving L(z|t).

Under the model (2) we
can factorize fy(y, z,m(3)) = fo.8(m(s), m(3))
- fur.o(y(8), 2lm(s), m(5)) and it is readily seen
that applying Lp, given by (8), to the terms
on the right hand side in (11) in fact gives us
Lp(z,m(2)ly) = maxg fo(y,2,m(3)), ie.

Lp(2,m(3)ly) = Ln(a)p(2ly) Lp(m(3)ly) . (13)

it follows that Ep(Z) and Vp(2Z) based on
Ly(z,m(3)]y) can be derived by (12). We note
that L, given by (7), has the same prog °rty,
ie. Lc(z m( )Iy) m(l),c(zly Lc S)Iy
Normal model

It is now assumed that model (2) holds and
that Y;;, M; are normally distributed.

We shall first consider the second likelihood
in (11), L(m(3)[y), using Lp. Let t&)(X) denote
the k-dimensional multivariate ¢-distribution
with v degrees of freedom (d.f.) and variance-
covariance matrix X, i.e. tg‘)().'l) is the distri-
bution of (U/W)y/v where U ~ Ni(0,Z) and
W2~ x2.

Let X(5) be the vector (z; : i € ).
Then Lp(m(3)|y) leads to a multivariate ¢-
distribution, specifically Lp(m(3)ly) is such
that [M(3) - BX(3))/¢ ~ t=m)(V), where
the m.le. are _ﬁ, given by (5), and 62 =
L Ties(mi = Bz:)?/v(zi). V = (vij) with
v = v(z;) + z?/w, and vij = zizj/w, for
i # j. Jt follows that Ep(M,) = Bz, Vp(M:) =
=225\ v(z:) + =7/w,) and the predictive co-
variances are Covp(M;, Mj) = ;?3-5&2 -2z [w,
for i # j. This implies that

E(S M) =

igs

ng . X2
VP(ZMi) = nog2 52 (vz+;u—:) :
tgs
L. and Lmp (for M /v(z:), i € ), lead to
moments similar to (14) with no — 2 replaced
by no — 5 and ng — 4 respectively.

Let us now consider the first term in (1),
Lon(s)(2]y) based on fg(y, zlm(3)). For this like-
lihood we will restrict attention to lp, i.e. de-
Tiving Lm(s)p(2ly). The mle. g,#2,5 can be
expressed the following way:

A=) T T T (19)

BX; and (14)

163 p + nlp 163 p + nlp
1(SSE g: — 2)?
= — 2 Z ni{gi — 1)
n\l-p ‘G.l—p+n,p
and p is found numerically, maximizing

—(n/2)log#? — (n/2) Tie,log(1 - p + nip) +

B




((.« — no)/2)log(l — p). Here, SSE =
EiE' Eje:;(yij - 378')2' When #n; = c, for all
i € s then g = § = T, Fifno, ¥ =
SS/n,ﬁ:max(O,l—;—l-- ),whereSS:
El.El Eje:,'(yij - 37)2

Consider first the case when p and T are
known. Then f is given by (15) with p replac-
ing /. In this case L) p(2ly) is such that Z is
normally distributed with

o(Z|m(3) Z(m, n;) (16)

i€s
1-p . n,p —
(1—p+n;pu+ 1- +":P ) ”gm”
V(Zlm(s)) = V(2ly,m(3)) + (17
m; + m; — nt
EsEﬁ I-P-!'ﬂ-P (; é;(

1-p )2
1—p+nip)
When p,7 are unknown, L,,(;)p(2ly) will for
large no be approximately such that Z is
normally distributed with Ep(Z|m(3)) and
Vo(Zlm(3)) given by (16) and (17) with
p, 72 replacing p,72. It now follows, from
(13), (14), (16) and (17) that, approximately,
Ly(2z,m(3)|y) has E;(Z) = E4(Zly) and

22
Vo(Z) = V4(Zly) + T s + x (18)
€8 1—~54nip
2
; . m; — n;

+&2 (I‘ — +~~2 Zsen s) +h(2)

Here, 15(Z]y) is given by (6) and

The predictive likelihood

L®)(z,m(3)ly) = Lm(n)p(2ly) Le(m(3)]y)
leads to the same Ep(Z) while V,(Z) equals (18)
with h(5) instead of A(2). With
L®™?)(2,m(3)|y) = Lon(s)p(2l¥) - Lrmp(m(3)]y)
we get the same Ep(Z) and Vp(Z) equal to (18)
with h(4).

It can be shown that, conditional on 3, (Z —
Eg(Z]y))/v/Ve(Zly) is asymptotically N(0,1)
as N — ng — oo provided that the z;’s are
bounded as N — ng — 0. Hence Z|y is ap-
uroximately normal for large N — ng, and the
quasi (1 — a) predictive interval given by (10)
becomes

Bs(2ly) £u(a/2)y/Vs(2)

where u () is the upper a/2-point in N(0,1).
This amounts to regarding N(Ep(Z),V(2)) as

a predictive distribution for Z. V,(Z) equals
(18) if the interval is based on Ly(z,m(3)|y),
while L(P©) has (18) with h(5) and L(P™P) has
(18) with h(4). Let us denote these prediction
intervals by I, Ipc and Ipnp. Clearly I C Imp C
L.

For large no there is practically no difference
between these intervals. However, for small ng
they do differ. To find out how the intervals
perform for small ng (and small N) a simulation
study with no = 6 and N = 10 was done to esti-
mate t* > confidence levels Cp, = P(Z € Ip(Y)),
Coe = P(Z € Inc(Y)) and Crp = P(Z €
Imp(Y)), all conditional on s. The approxima-
tions to Ly,(;), and to the distribution of Z
given y are not valid for small no and small
N — ng. Still, it is of interest to find out how
the cove.age properties of the different intervals
are in this case. In ~ later paper a more com-
prehensive simulation study will be undertaken,
including also large ng, N -- ng cases.

The simulation study considers the following
two main cases, with s = (1,2,3,4,5,6),1-a =
95, v(z) =zand n; =¢, Vi€ s. (I) ) =z
=z3=50,24 = 25 = 30,24 = T7 = T4 = 100,
zg = 210 = 50; ¢ = 3,10. () 2y = z3 = z3 =




)

5000, 24 = x5 = 3000, zg = @7 = zg = 10000,
zg = o109 = 5000; c = 10,4C0.

Case (I): Two values of p are considered, y =
5,100. For g > 100 the confidence levels
seemed to be essentially equal to the confidence
levels when g = 100. With regard to o,8 the
levels seemed to depend essentially on the ratio
B/co and we consider /¢ = .75, 1, 1.5, 2, 3.

(Ta): p =100, 7 =1,5and p = .1, .5, .9. The
confidence levels are approximately constarnt for
all the various chosen values of 8. Based on

simulation of 60,000 observations of (y,z) we
find Cp = .924, Comp = .973, Cpe = 992.

Table 1. Confidence levels for case (I) and g =
5, 7=1;1-a=.95.

Ble| 75 1 15 2 3

p
Jd1.929 936 .32 .937 .927
Cp.5].930 .921 .913 .899 .891
91.920 .923 .899 .895 .889

d1.971 973 962 961 .948
Cmp 5| .967 659 .943 .927 .905
9].961 .92 .930 .919 .904

Jd].990 .991 .984 .980 .967
Cpc 5| 989 .981 .971 .958 .930
9] .986 .978 .958 .948 .922

Table 2. Confidence levels for case (II) and ¢ =
ﬂ:l, 1-a=.95.
T/p 01 .05 .20

p
¢ | 106,400 10,400 10 400

01| .923 936 .94C¢ .926
Cp 10| .923 929 920 .874
50| .929 .896  .870 864

01| .97« 970 944 949
Cmp 10 [ 973 961  .923 .889
50| 971 922  .872 .866

01| 994 989 951 .975
Cpe 10| 994 982 928 .911
50| 994 951 .876 .873

(A

(Ib): p = 5, 7 = 1. Table 1 is based on simula-

tion of 5000 observations of (y, z) in each case.

Case (II): We consider § = o = 1. It seems

that the confidence levels depend on g, only
through the coefficient of variation, 7/u. Table
2 is based on simulation of 5000 observations of
(y,2) in each case.

When no = 6 and N = 10 I, is clearly too
short generally. I is typically too wide, espe-
cially when p is only nioderately large. Overall,
Inp seems to have confidence levels closest to
.95 of the three intervals.
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